Indexed by:
Abstract:
Data flow learning algorithms must be very efficient in learning and predicting sequences. The model that monitors a sequence of data or events can predict the sequel and can act in such a way that it optimally achieves the desired result. Security and digital risk tracking systems are receiving a constant and unlimited input of observations. These data flows are characterized by high variability, as their properties can change drastically and unpredictably over time. Each incoming example can only be processed once, or it must be summarized with a small memory imprint. This research paper proposes the development of an intelligent system, for real-time detection of data flow anomalies related to information systems' security. Specifically, it describes the implementation of an efficient and high-precision energy-based Online Sequential Extreme Learning Machine (e-b OSELM) that is proposed for the first time in the literature. It is an intelligent model that can detect data dependencies, by applying a measure of compatibility (scalable energy) to each configuration of its variables. It assigns low energy to the correct values and higher energy to the divergent (abnormal) ones. The innovative combination of energy models and ELMs offers high learning speed, ease of execution, minimum human involvement and minimum computational power and resources for anomaly detection and identification.
Keyword:
Reprint Author's Address:
Source :
NEURAL COMPUTING & APPLICATIONS
ISSN: 0941-0643
Year: 2021
Issue: 2
Volume: 34
Page: 823-831
6 . 0 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:87
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: