• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

姬强 (姬强.) | 孙艳丰 (孙艳丰.) (Scholars:孙艳丰) | 胡永利 (胡永利.) (Scholars:胡永利) | 尹宝才 (尹宝才.) (Scholars:尹宝才)

Indexed by:

Scopus CSCD

Abstract:

聚类分析是挖掘数据内在结构的关键技术,在大数据时代,人们面对的数据通常具有规模大、维度高、结构复杂等特点,直接应用传统聚类算法往往会失效.深度学习凭借层次化非线性映射能力使得大规模深度特征提取成为可能,因此基于深度学习的聚类(深度聚类)算法迅速成为无监督学习领域的研究热点.该文旨在对深度聚类的研究现状进行归纳和总结.首先,从神经网络结构、聚类损失和网络辅助损失3个角度介绍深度聚类的相关概念;然后,根据网络的结构特点对现有的深度聚类算法进行分类,并分别对每类方法的优势和劣势进行分析和阐述;最后,提出好的深度聚类算法应具备的三要素:模型的可扩展性、损失函数的鲁棒性和特征空间的平滑性,并从这3个方面分别阐述未来可能的研究方向.

Keyword:

特征学习 聚类损失 网络辅助损失 深度学习 聚类 神经网络结构

Author Community:

  • [ 1 ] [姬强]北京工业大学信息学部多媒体与智能软件技术北京市重点实验室, 北京 100124
  • [ 2 ] [孙艳丰]北京工业大学信息学部多媒体与智能软件技术北京市重点实验室, 北京 100124
  • [ 3 ] [胡永利]北京工业大学信息学部多媒体与智能软件技术北京市重点实验室, 北京 100124
  • [ 4 ] [尹宝才]北京工业大学信息学部多媒体与智能软件技术北京市重点实验室, 北京 100124

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

北京工业大学学报

ISSN: 0254-0037

Year: 2021

Issue: 8

Volume: 47

Page: 912-924

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: -1

Chinese Cited Count:

30 Days PV: 27

Online/Total:322/10509937
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.