• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

习金浩 (习金浩.) | 孟峰 (孟峰.) | 朱凤华 (朱凤华.) | 贺正冰 (贺正冰.) | 李润梅 (李润梅.) | 吕宜生 (吕宜生.)

Abstract:

针对高速公路各路段交通流信息差异较大这一现象,为提高交通流预测准确率,将注意力机制引入卷积神经网络,建立描述交通流时空关联特征的多核自适应网络(Multi-Kernel Adaptive Network,MKAN).首先对输入的历史交通流数据进行多分支卷积,获得不同尺度的交通流特征;然后根据输入信息自适应调整各卷积分支权重并对各分支多通道特征图进行加权融合;最后根据融合特征图,利用多层感知机预测下一时段交通流.基于加州交通运输部性能测试系统中的高速公路交通流数据设计实验进行模型验证和对比分析.实验结果表明,在大多数站点,MKAN模型的预测均方根误差和平均绝对误差低于长短期记忆网络、门控循环单元、K近邻算法和支持向量回归模型,对140号站点进行全天交通流预测,在1d内的各时段,MKAN模型预测绝对误差均小于其他对比模型;相比于单核卷积神经网络,在绝大多数站点,MKAN模型预测结果的均方根误差和平均绝对误差降低7%以上,对31号站点进行全天交通流预测,在1d内的大多数时段,MKAN模型预测绝对误差小于其他单核卷积神经网络.实验证明,多核自适应网络可有效提高交通流预测准确率,其预测效果优于部分传统预测模型和单核卷积神经网络.

Keyword:

高速公路交通流 多核自适应网络 城市交通 深度学习 交通流预测

Author Community:

  • [ 1 ] [习金浩]中国科学院大学 人工智能学院,北京 100049;中国科学院自动化研究所 复杂系统管理与控制国家重点实验室,北京 100190
  • [ 2 ] [孟峰]国家能源集团大雁集团(神宝能源),内蒙古 呼伦贝尔 021000
  • [ 3 ] [朱凤华]中国科学院自动化研究所 复杂系统管理与控制国家重点实验室,北京 100190
  • [ 4 ] [贺正冰]北京工业大学交通工程北京重点实验室,北京 100024
  • [ 5 ] [李润梅]北京交通大学
  • [ 6 ] [吕宜生]中国科学院自动化研究所 复杂系统管理与控制国家重点实验室,北京 100190

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

交通运输研究

ISSN: 1002-4786

Year: 2021

Issue: 4

Volume: 7

Page: 1-9

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: -1

Chinese Cited Count:

30 Days PV: 6

Online/Total:407/10507408
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.