• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Fan, Youshu (Fan, Youshu.) | Xi, Xiaoli (Xi, Xiaoli.) (Scholars:席晓丽) | Liu, Yangsi (Liu, Yangsi.) | Nie, Zuoren (Nie, Zuoren.) (Scholars:聂祚仁) | Zhang, Qinghua (Zhang, Qinghua.) | Zhao, Linyan (Zhao, Linyan.)

Indexed by:

EI Scopus SCIE

Abstract:

Controllable growth of nanostructured tungsten trioxide (WO3) films grown on substrates with good adhesion in a single-step process is still challenging. In this paper, immobilized WO3 nanostructures with different microstructure and morphology were prepared by solvothermal methods in various solvents. X-ray diffraction (XRD), scanning electron microscope (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Raman spectra results showed that the type of solvents has a great influence on the microstructure, morphology and elemental component of as-prepared WO3 nanostructures, and their growth process had been analyzed with the vapor pressure and viscosity. The electrochromic studies for the WO3 nanostructures (nano-wire arrays) synthesized in ethanol exhibited low electrochemical impedance spectroscopy (EIS), high peak current density, and efficient electron hole separation efficiency with respect to other products. The nanowire arrays showed the highest photocatalytic performance, and the degradation rate can reach 93.3% in 1 h. It is deduced that the excellent photocatalytic performance was mainly attribute to the efficient charge transfer capability.

Keyword:

WO3 films Vapor pressure Growth process Visible-light photocatalysis Solvent

Author Community:

  • [ 1 ] [Fan, Youshu]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 2 ] [Xi, Xiaoli]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Yangsi]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 4 ] [Nie, Zuoren]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Qinghua]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 6 ] [Zhao, Linyan]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 7 ] [Xi, Xiaoli]Beijing Univ Technol, Natl Engn Lab Ind Big Data Applicat Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Nie, Zuoren]Beijing Univ Technol, Natl Engn Lab Ind Big Data Applicat Technol, Beijing 100124, Peoples R China
  • [ 9 ] [Liu, Yangsi]Beijing Univ Technol, Beijing Guyue New Mat Res Inst, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 席晓丽

    [Xi, Xiaoli]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS

ISSN: 0022-3697

Year: 2020

Volume: 140

4 . 0 0 0

JCR@2022

ESI Discipline: PHYSICS;

ESI HC Threshold:100

Cited Count:

WoS CC Cited Count: 29

SCOPUS Cited Count: 30

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:692/10648690
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.