• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wei, Yu-Ling (Wei, Yu-Ling.) | Yang, Qing-Sheng (Yang, Qing-Sheng.) (Scholars:杨庆生) | Liu, Xia (Liu, Xia.) | Tao, Ran (Tao, Ran.)

Indexed by:

EI Scopus SCIE

Abstract:

The structures evolved by creatures to adapt to the specific living environment have excellent mechanical properties. Studying from nature, we can get inspiration to design the structure with unparalleled mechanical properties. This paper proposed a new multi-bionic strategy, which combined the face centered cubic (FCC) structure with light weight and high specific strength and the concentric circle structure with high toughness. Those two structure were inspired by the arrangement of metal atoms and bone respectively. The multi-bionic metamaterials with different ratios of soft phase material were prepared by 3D printer. The force displacement curves of the metamaterials were obtained by quasi-static compression experiment, and compared with the lattice structure made of pure hard phase material. In addition, the failure behavior of the metamaterials and the effect of the concentric soft and hard rods on the toughness and energy absorption performance of the metamaterials were studied. Results show that for a metamaterial with soft phase ratio of 20%, the strain when rods begin to break and absorbed energy are 2 times and 3.8 times that of the pure hard phase lattice, respectively. The design strategy is not only limited to the combination of the two structures in this work, but can also guide the combination of more biological structures to optimize and customize the performance of metamaterials.

Keyword:

Metamaterial Toughness Multi-bionic Energy absorption

Author Community:

  • [ 1 ] [Wei, Yu-Ling]Beijing Univ Technol, Dept Engn Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Qing-Sheng]Beijing Univ Technol, Dept Engn Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Xia]Beijing Univ Technol, Dept Engn Mech, Beijing 100124, Peoples R China
  • [ 4 ] [Tao, Ran]Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China

Reprint Author's Address:

  • 杨庆生

    [Yang, Qing-Sheng]Beijing Univ Technol, Dept Engn Mech, Beijing 100124, Peoples R China;;[Tao, Ran]Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China

Show more details

Related Keywords:

Source :

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES

ISSN: 0020-7403

Year: 2022

Volume: 213

7 . 3

JCR@2022

7 . 3 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 56

SCOPUS Cited Count: 68

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 10

Affiliated Colleges:

Online/Total:509/10600948
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.