Indexed by:
Abstract:
Semantic segmentation based on the complementary information from RGB and depth images has recently gained great popularity, but due to the difference between RGB and depth maps, how to effectively use RGB-D information is still a problem. In this paper, we propose a novel RGB-D semantic segmentation network named RAFNet, which can selectively gather features from the RGB and depth information. Specifically, we construct an architecture with three parallel branches and propose several complementary attention modules. This structure enables a fusion branch and we add the Bi-directional Multi-step Propagation (BMP) strategy to it, which can not only retain the feature streams of the original RGB and depth branches but also fully utilize the feature flow of the fusion branch. There are three kinds of complementary attention modules that we have constructed. The RGB-D fusion module can effectively extract important features from the RGB and depth branch streams. The refinement module can reduce the loss of semantic information and the context aggregation module can help propagate and integrate information better. We train and evaluate our model on NYUDv2 and SUN-RGBD datasets, and prove that our model achieves state-of-the-art performances.
Keyword:
Reprint Author's Address:
Email:
Source :
DISPLAYS
ISSN: 0141-9382
Year: 2021
Volume: 70
4 . 3 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:87
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 17
SCOPUS Cited Count: 21
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: