Indexed by:
Abstract:
Medication combination prediction can be applied to the clinical treatment for critical patients with multi-morbidity. The suitable medication combination can help cure patients and keep the treatment medication safe. However, the complexity and uncertainty of clinical circumstances limit the predictive accuracy of medication combination. Thus, this paper proposes a new medication combination prediction model based on the temporal attention mechanism (TAM) and the simple graph convolution (SGC), named as TAMSGC. More specifically, the TAM can capture the temporal sequence information in the medical records, and the SGC is implemented to acquire the medication knowledge from the complicated medication combination. Experiments in a real dataset show that TAMSGC surpasses the baseline models on the predictive accuracy of medication combination.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
ISSN: 2168-2194
Year: 2021
Issue: 10
Volume: 25
Page: 3995-4004
7 . 7 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:87
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 11
SCOPUS Cited Count: 16
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 18
Affiliated Colleges: