Indexed by:
Abstract:
A new active-learning function is developed to integrate Polynomial-Chaos Kriging with probability density evolution method. First, the relative importance of each representative point to the probability of failure is separately measured, thereby the region of interest is defined for the probability density evolution method, which covers the representative points exerting vital contributions to the probability of failure. Then, a new learning function called the probability density evolution method-oriented information entropy is readily devised based on the information theory, and the stopping condition is defined by specifying a threshold for the learning function values. Two examples are studied to show the efficacy of the adaptive Polynomial-Chaos Kriging probability density evolution method, and the recommended values of two key parameters associated with this new learning function are provided. Moreover, comprehensive comparisons are conducted against several existing reliability methods. The results highlight the advantage of the proposed active-learning function for structural reliability analysis in terms of both computational accuracy and efficiency.
Keyword:
Reprint Author's Address:
Source :
APPLIED MATHEMATICAL MODELLING
ISSN: 0307-904X
Year: 2022
Volume: 106
Page: 86-99
5 . 0
JCR@2022
5 . 0 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 17
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: