• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Guo, Hang (Guo, Hang.) (Scholars:郭航) | Song, Jia (Song, Jia.) | Ye, Fang (Ye, Fang.) | Fang, M. A. Chong (Fang, M. A. Chong.)

Indexed by:

EI Scopus SCIE

Abstract:

Oxygen side flow channel structures have significant influence on the dynamic response of relevant parameters in operation mode switching procedures of a unitized regenerative fuel cell. In this paper, an unsteady, non-isothermal, two-phase, two-dimensional unitized regenerative fuel cell model is established to study the dynamic response of two-phase species concentration distributions, current density distributions etc. when the cell mode swiches from the fuel cell mode to the electrolyzer when using orientational flow channel at the oxygen side. The influence of eight oxygen-side channels on the mode switching process is compared. Results show that the required time for each parameter reaching the stable state in the fuel cell mode is longer than the dynamic response time after switching to electrolytic cell mode when using orientational flow channels. In addition, different flow channel structures at the oxygen-side affect the time requirement for stabilizing each parameter during mode switching, while they do not change the characteristics of the stable state mode.(c) 2022 Elsevier Ltd. All rights reserved.

Keyword:

Mode switching Orientational flow channel Dynamic response Mass transfer Unitized regenerative fuel cell

Author Community:

  • [ 1 ] [Guo, Hang]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Coll Energy & Power Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

RENEWABLE ENERGY

ISSN: 0960-1481

Year: 2022

Volume: 188

Page: 698-710

8 . 7

JCR@2022

8 . 7 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 16

SCOPUS Cited Count: 18

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 15

Affiliated Colleges:

Online/Total:595/10598715
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.