• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Xu, Guangpeng (Xu, Guangpeng.) | Bing, Liujie (Bing, Liujie.) | Jia, Bingying (Jia, Bingying.) | Bai, Shiyang (Bai, Shiyang.) | Sun, Jihong (Sun, Jihong.) (Scholars:孙继红)

Indexed by:

EI Scopus SCIE

Abstract:

Three kinds of the bipyridine-proline chiral ligands as highly active species were successfully introduced on Zn-modified mesoporous silica nanomaterials (BMMs, MCM-41, and SBA-15) via the covalent attachment and coordination methods. Their microstructural features and physicochemical properties were extensively characterized via XRD patterns, SEM/TEM images, TGA profiles, FT-IR and UV-Vis spectra. In particular, their fractal features, the pair distance distribution function, and the Porod plots were evaluated thoroughly on the basis of the SAXS data. Meanwhile, their catalytic performances for asymmetric aldol reactions between p-nitrobenzaldehyde and cyclohexanone were evaluated. The results indicated that the bimodal mesoporous BMMs-based samples with short worm-like mesoporous channels possessed both mass and surface fractal features, whereas the MCM-41- and SBA-15-based samples with long-range ordered structures only showed surface fractal features. The influences of various reaction parameters, including the textures of the mesoporous silicas, the structures of the used chiral ligands, and the molecular volumes of aldehydes, on the catalytic activities (yield) and stereoselectivities (dr and ee) were investigated thoroughly. The results showed satisfactory activities (yields) and better stereoselectivity (dr and ee) in comparison with the homogeneous catalytic system using Z as the catalysts. In particular, the 3(rd) recycle catalytic performances of the Z-immobilized heterogeneous catalysts retained high catalytic yields (around 80%) and ee values of 28%. These phenomena were well interpreted by the essential relationships between the fractal characteristics of these heterogeneous catalysts and their catalytic activities.

Keyword:

Author Community:

  • [ 1 ] [Xu, Guangpeng]Beijing Univ Technol, Dept Environm & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Bing, Liujie]Beijing Univ Technol, Dept Environm & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Jia, Bingying]Beijing Univ Technol, Dept Environm & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Bai, Shiyang]Beijing Univ Technol, Dept Environm & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [Sun, Jihong]Beijing Univ Technol, Dept Environm & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Related Article:

Source :

RSC ADVANCES

Year: 2022

Issue: 17

Volume: 12

Page: 10800-10814

3 . 9

JCR@2022

3 . 9 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:53

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 2

SCOPUS Cited Count: 2

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Affiliated Colleges:

Online/Total:1142/10572514
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.