• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, W. (Zhang, W..) | Gao, Y. H. (Gao, Y. H..) | Lu, S. F. (Lu, S. F..)

Indexed by:

EI Scopus SCIE

Abstract:

The stability and vibration of the telescopic wing are studied by the theoretical, numerical and experimental methods when the wing is in the deployment and retraction. The telescopic wing is simplified to a telescopic cantilevered laminated composite rectangular plate subjected to the first-order aerodynamic force and in-plane excitation. The time-varying dynamic characteristics of the telescopic cantilevered laminated composite rectangular plate are investigated by using the analytical, numerical and experimental methods. The approximate analytical solution of the nonlinear time-varying system is obtained by using the improved averaging method. Compared with numerical simulations, the approximate analytical results demonstrate a good agreement. The stability of the telescopic cantilever plate during the deploying process is studied by using the eigenvalue method, which demonstrates the effect of the velocity, acceleration and thickness on the stability of the deployment. The experimental results are consistent with the theoretical results and provide the theoretical basis and technical support for the axial moving wing.

Keyword:

Averaging method Experimental research Time-varying dynamic characteristic Telescopic wing

Author Community:

  • [ 1 ] [Zhang, W.]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Gao, Y. H.]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, W.]Inner Mongolia Univ Technol, Coll Sci, Hohhot 010051, Peoples R China
  • [ 4 ] [Lu, S. F.]Inner Mongolia Univ Technol, Coll Sci, Hohhot 010051, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

JOURNAL OF SOUND AND VIBRATION

ISSN: 0022-460X

Year: 2022

Volume: 522

4 . 7

JCR@2022

4 . 7 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 8

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Affiliated Colleges:

Online/Total:644/10645666
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.