Indexed by:
Abstract:
The self-propulsion of a Janus particle suspended in a dilute gas at equilibrium is investigated in the free molecular regime. The Janus particle consists of two hemispheres with different momentum accommodation factors; the particle and the surrounding gas are held at different constant temperatures. Based on the gas kinetic theory, we calculate the particle's self-propulsion and drag force. We conclude that self-propulsion occurs only under the condition that the particle is hotter/colder than the suspension gas, and the self-propulsion force is proportional to the difference of the momentum accommodation factors and directed along the symmetry axis. The drag force, instead, is corrected by a term proportional to the average of the momentum accommodation factors. Our analytical results are confirmed by numerical Monte Carlo simulations.
Keyword:
Reprint Author's Address:
Email:
Source :
PHYSICS OF FLUIDS
ISSN: 1070-6631
Year: 2022
Issue: 3
Volume: 34
4 . 6
JCR@2022
4 . 6 0 0
JCR@2022
ESI Discipline: PHYSICS;
ESI HC Threshold:41
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: