Indexed by:
Abstract:
Metal-organic frameworks (MOFs) provide an ideal platform for ion exchange due to their high porosity and structural designability; however, developing MOFs that have the essential characteristics for ion exchange remains a challenge. These crucial features include fast kinetics, selectivity, and stability. We present two anionic isomers, DGIST-2 (2D) and DGIST-3 (3D), comprising distinctly arranged 5-(1,8-naphthalimido)-isophthalate ligands and In3+ cations. Interestingly, in protic solvents, DGIST-2 transforms into a hydrolytically stable crystalline phase, DGIST-2'. DGIST-2' and DGIST-3 exhibit rapid Cs+ adsorption kinetics, as well as high Cs+ affinity in the presence of competing cations. The mechanism for rapid and selective sorption is explored based on the results of single-crystal X-ray diffraction analysis of Cs+-incorporated DGIST-3. In Cs+-containing solutions, the loosely incorporated dimethylammonium countercation of the anionic framework is replaced by Cs+, which is held in the hydrophobic cavity by supramolecular ion-ion and cation-pi interactions.
Keyword:
Reprint Author's Address:
Email:
Source :
INORGANIC CHEMISTRY
ISSN: 0020-1669
Year: 2022
Issue: 4
Volume: 61
Page: 1918-1927
4 . 6
JCR@2022
4 . 6 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:53
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: