Indexed by:
Abstract:
Numerous single image super-resolution (SISR) algorithms have been proposed during the past years to reconstruct a high-resolution (HR) image from its low-resolution (LR) observation. However, how to fairly compare the performance of different SISR algorithms/results remains a challenging problem. So far, the lack of comprehensive human subjective study on large-scale real-world SISR datasets and accurate objective SISR quality assessment metrics makes it unreliable to truly understand the performance of different SISR algorithms. We in this paper make efforts to tackle these two issues. Firstly, we construct a real-world SISR quality dataset (i.e., RealSRQ) and conduct human subjective studies to compare the performance of the representative SISR algorithms. Secondly, we propose a new objective metric, i.e., KLTSRQA, based on the Karhunen-Loeve Transform (KLT) to evaluate the quality of SISR images in a no-reference (NR) manner. Experiments on our constructed RealSRQ and the latest synthetic SISR quality dataset (i.e., QADS) have demonstrated the superiority of our proposed KLTSRQA metric, achieving higher consistency with human subjective scores than relevant existing NR image quality assessment (NR-IQA) metrics. The dataset and the code will be made available at https://github.com/Zhentao-Liu/RealSRQ-KLTSRQA.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN: 1057-7149
Year: 2022
Volume: 31
Page: 2279-2294
1 0 . 6
JCR@2022
1 0 . 6 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 77
SCOPUS Cited Count: 94
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: