Indexed by:
Abstract:
A partial-denitrification coupling with anaerobic ammonium oxidation (anammox) process (PD/A) in a continuous-flow anoxic/oxic (A/O) biofilm reactor was developed to treat carbon-limited domestic wastewater (ammonia (NH4+-N) of 55 mg/L and chemical oxygen demand (COD) of 148 mg/L in average) for about 200 days operation. Satisfactory NH4+-N oxidation efficiency above 95% was achieved with rapid biofilm formation in the aerobic zone. Notably, nitrite (NO2--N) accumulation was observed in the anoxic zone, mainly due to the insufficient electron donor for complete nitrate (NO3--N) reduction. The nitrate-to-nitrite transformation ratio (NTR) achieved was as high as 64.4%. After the inoculation of anammox-enriched sludge to anoxic zones, total nitrogen (TN) removal was significantly improved from 37.3% to 78.0%. Anammox bacteria were effectively retained in anoxic biofilm utilizing NO2--N produced via the PD approach and NH4+-N in domestic wastewater, with the relative abundance of 5.83% for stable operation. Anammox pathway contributed to TN removal by a high level of 38%. Overall, this study provided a promising method for mainstream nitrogen removal with low energy consumption and organic carbon demand.
Keyword:
Reprint Author's Address:
Email:
Source :
PROCESSES
Year: 2022
Issue: 1
Volume: 10
3 . 5
JCR@2022
3 . 5 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 10
SCOPUS Cited Count: 13
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: