Indexed by:
Abstract:
The relatively limited understanding of the physiology of uterine activation prevents us from achieving optimal clinical outcomes for managing serious pregnancy disorders such as preterm birth or uterine dystocia. There is increasing awareness that multi-scale computational modeling of the uterus is a promising approach for providing a qualitative and quantitative description of uterine physiology. The overarching objective of such approach is to coalesce previously fragmentary information into a predictive and testable model of uterine activity that, in turn, informs the development of new diagnostic and therapeutic approaches to these pressing clinical problems. This article assesses current progress towards this goal. We summarize the electrophysiological basis of uterine activation as presently understood and review recent research approaches to uterine modeling at different scales from single cell to tissue, whole organ and organism with particular focus on transformative data in the last decade. We describe the positives and limitations of these approaches, thereby identifying key gaps in our knowledge on which to focus, in parallel, future computational and biological research efforts.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE REVIEWS IN BIOMEDICAL ENGINEERING
ISSN: 1937-3333
Year: 2022
Volume: 15
Page: 341-353
1 7 . 6
JCR@2022
1 7 . 6 0 0
JCR@2022
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: