Indexed by:
Abstract:
Mineralized collagen is a natural organic-inorganic composite. The combination of organic collagen and inorganic apatite to form different nanostructures is the key to producing bone substitutes with biomechanical properties that are as identical to normal bone as possible. However, the formation of apatite with different nanostructures during collagen mineralization is unexplored. Here, pyrophosphate (Pyro-P), as an important hydrolysate of adenosine triphosphate in the body, was introduced to prepare mineralized collagen under the regulation of alkaline phosphatase (ALP) and orthophosphate (Ortho-P). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed that mineralized collagen, which combined with different crystallinities and multilayered structured apatite, was successfully prepared. A combination of ion chromatography (IC), Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD), and thermogravimetry (TG) analyses revealed the crucial role of Ortho-P in the formation of multilayered flower-shaped apatite with different crystallinities and in the maintenance of mineralization balance. Mineralization balance is of great significance for maintaining normal bone morphology during bone regeneration. Overall, our results provide a promising method to produce new bone substitute materials for the repair of large bone defects and a deeper insight into the mechanisms of biomineralization.
Keyword:
Reprint Author's Address:
Email:
Source :
NANOSCALE
ISSN: 2040-3364
Year: 2021
Issue: 5
Volume: 14
Page: 1814-1825
6 . 7 0 0
JCR@2022
ESI Discipline: PHYSICS;
ESI HC Threshold:72
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 11
SCOPUS Cited Count: 13
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: