Indexed by:
Abstract:
Cherenkov-excited luminescence scanned tomography (CELST) is an emerging tomographic optical imaging modality. However, recovering spatial distribution of luminescent source from boundary measurements is a typically ill-posed problem. To improve the performance of CELST reconstruction, an end-to-end reconstruction algorithm is developed by combining dilated convolution and attention mechanism based on Unet (DA-Unet). Its performance is validated with numerical simulations. The results reveal that DA-Unet has superior reconstruction performance with high spatial resolution. It achieves image quality with PSNR of more than 35 dB and SSIM of larger than 0.95. Furthermore, the DA-Unet can reconstruct luminescent source even with less boundary measurements.
Keyword:
Reprint Author's Address:
Email:
Source :
MOLECULAR-GUIDED SURGERY: MOLECULES, DEVICES, AND APPLICATIONS VIII
ISSN: 0277-786X
Year: 2022
Volume: 11943
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: