Abstract:
考虑到发酵过程的动态特征对阶段划分的影响,为提高模型预测精度,提出一种基于注意力LSTM的多阶段发酵过程质量预测方法.首先,将原始三维数据沿批次展开,对每个时间片矩阵进行偏最小二乘(PLS)分析得到表征过程变量的得分矩阵和表征质量变量的得分矩阵,采用仿射传播(AP)聚类算法将联合得分矩阵进行聚类,实现第1步划分;然后,采用encoder-decoder模型将表征过程动态性的动态特征提取出来,采用AP算法对其进行第2步划分;最后,综合分析两步划分结果,将生产过程划分为不同的稳定阶段和过渡阶段,对划分后的各个阶段分别建立注意力长短期记忆(LSTM)集成质量预测模型.将该方法应用到青霉素发酵仿真数据...
Keyword:
Reprint Author's Address:
Email:
Source :
控制与决策
Year: 2022
Issue: 03
Volume: 37
Page: 616-624
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: