Abstract:
为满足给水系统日常管理对短期需水量预测时效的需求,建立了所需训练时间短的核极限学习机模型(kernel-based extreme learning machine, KELM);从提升预测精度的角度考虑,构造了以傅里叶级数为理论依据的残差修正模块(Fourier series, FS),利用该模块对需水量初始预测值与观测值之间的差值进行建模,完成对初始预测值的残差修正,将该模块叠加于KELM模型上形成了组合预测模型(KELM+FS)。通过实际数据对模型进行性能测试,结果表明:KELM模型能够与人工神经网络模型、支持向量回归模型产生相似的预测精度,但预测时间仅为二者平均值的5%左右;组合模型K...
Keyword:
Reprint Author's Address:
Email:
Source :
哈尔滨工业大学学报
Year: 2022
Issue: 02
Volume: 54
Page: 17-24
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: