Abstract:
氢能作为一种清洁高效的可再生能源,具有能量密度高、来源广泛、零污染等优点,被广泛认为是本世纪最具应用前景的能源载体之一。高压气态储氢是目前我国使用最为广泛的一种氢气储存方式,而高压氢气泄漏是高压储氢中的重大安全隐患。结合BP神经网络设计了一种检测高压氢气泄漏的方法。将激光束穿过氢气射流产生的光斑图像输入神经网络,从而反推出氢气泄漏口的直径和出口压力大小。结果表明:预测值与实际值接近,并且具有很高的稳定性。这项技术可以应用于检测远距离放置的储氢瓶阀门的泄漏、低压电解槽的泄漏、氢储罐管件及密封环的泄漏,以及储氢设备的通风口处的泄漏等。
Keyword:
Reprint Author's Address:
Email:
Source :
重庆理工大学学报(自然科学)
Year: 2022
Issue: 03
Volume: 36
Page: 289-294
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9