Abstract:
针对无人机视频跟踪过程中,目标占比较小且易受复杂背景信息干扰等问题,提出一种基于自适应融合网络的无人机目标跟踪算法。首先,基于感受野模块和残差网络构建深度网络模型,能够有效提取目标特征并增强特征的有效感受野;其次,提出一种多尺度自适应融合网络,能够自适应地融合深层网络的语义特征和浅层网络的细节特征,增强特征的表达能力;最后,将融合的目标特征输入到相关滤波模型中,计算出响应图的最大置信分数,从而确定跟踪目标位置。仿真实验结果表明,该算法在跟踪成功率和精确率上都达到了较高水平,有效提升了无人机目标跟踪算法性能。
Keyword:
Reprint Author's Address:
Email:
Source :
航空学报
Year: 2022
Issue: 07
Volume: 43
Page: 366-376
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: