Abstract:
针对案例推理(case-based reasoning,CBR)检索过程中特征权重的分配结果直接影响案例推理预测模型性能的问题,提出了一种基于自私牧群-模拟退火(selfish herd optimizer-simulated annealing,SHO-SA)算法的特征权重优化分配方法.首先,将案例推理预测模型的均方根误差定义为自私牧群算法和模拟退火算法中权重寻优的适应度;然后,通过自私牧群算法的牧群运动、捕食及恢复等步骤得到种群内最小均方根误差所对应的权重;最后,采用模拟退火算法对上述权重进行随机搜索,从而获得特征权重的近似最优解.采用加州大学欧文分析(University of Cali...
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2022
Issue: 04
Page: 1-13
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: