Indexed by:
Abstract:
Visual sentiment is subjective and abstract, and it is very challenging to locate the sentiment features from images accurately. Some researchers devote themselves to extracting visual features but ignore the relation features. However, sentiment reaction is a comprehensive action of visual content, and regions may express different emotions and contribute to the image sentiment. This paper takes the abstract sentiment relation as the starting point and proposes the Weakly Supervised Interaction Discovery Network that couples detection and classification branch. Specifically, the first branch detects sentiment maps with the cross-spatial pooling strategy, which generates the representations of emotions. Then, we employ a stacked Graph Convolution Network to extract the interaction feature from the above features. The second branch utilizes both interaction and visual features for robust sentiment classification. Extensive experiments on six benchmark datasets demonstrate that the proposed method exceeds the state-of-the-art methods for image sentiment analysis. © 2022, Springer Nature Switzerland AG.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2022
Volume: 13188 LNCS
Page: 501-512
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: