Indexed by:
Abstract:
Large rupture strain (LRS) fiber-reinforced polymer (FRP) composites with an ultimate elongation of greater than 5% offer superior deformation and energy dissipation abilities over traditional carbon or glass FRP when used them in lateral confinement of concrete under the same confinement level. However, a flexible model for predicting the stress-strain relationship of concrete columns confined with LRS FRP is not yet perfectly developed, especially for noncircular columns experiencing nonuniform confining stress. Accordingly, an extensive database of LRS FRP-confined square and circular concrete columns with corner radius ratios varying from 0 to 1 was employed to establish a unified stress-strain model. This model not only includes the determinations of key points, but also attempts to define the threshold confinement level to distinguish the post-peak strain-hardening and strain-softening behaviors. The mathematical expression of the model is simple; it also avoids discontinuities in the prediction of different cross-sections. The proposed model is verified to be accurate in predicting the complete stress-strain curves of LRS FRP-confined square and circular concrete columns with hardening and softening behaviors. In addition, it outperforms the existing theoretical models in predicting the ultimate strength and the ultimate axial strain. © 2022
Keyword:
Reprint Author's Address:
Email:
Source :
Engineering Structures
ISSN: 0141-0296
Year: 2022
Volume: 255
5 . 5
JCR@2022
5 . 5 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 19
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: