Indexed by:
Abstract:
To face the challenge of adapting to complex terrains and environments, we develop a novel wheel-legged robot that can switch motion modes to adapt to different environments. The robot can perform efficient and stable upright balanced locomotion on flat roads and flexible crawling in low and narrow passages. For passing through low and narrow passages, we propose a crawling motion control strategy and methods for transitioning between locomotion modes of wheel-legged robots. In practical applications, the smooth transition between the two motion modes is challenging. By optimizing the gravity work of the body, the optimal trajectory of the center of mass (CoM) for the transition from standing to crawling is obtained. By constructing and solving an optimization problem regarding the posture and motion trajectories of the underactuated model, the robot achieves a smooth transition from crawling to standing. In experiments, the wheel-legged robot successfully transitioned between the crawling mode and the upright balanced moving mode and flexibly passed a low and narrow passage. Consequently, the effectiveness of the control strategies and algorithms proposed in this paper are verified by experiments. © 2022 by the authors.
Keyword:
Reprint Author's Address:
Email:
Source :
Micromachines
Year: 2022
Issue: 8
Volume: 13
3 . 4
JCR@2022
3 . 4 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: