Indexed by:
Abstract:
Recently, convolutional neural networks (CNNs) have demonstrated impressive capabilities in the representation and classification of hyperspectral remote sensing images. Traditional CNNs require massive data to sufficiently train the network. To tackle this problem, graph convolutional network (GCN) has been introduced for hyperspectral image classification. GCN methods usually construct the graph from either spectral or spatial domain, which has not adequately explored the information in the joint spectral-spatial domain. In this article, we propose a superpixel spectral-spatial feature fusion graph convolution network for hyperspectral image classification (S3FGCN). S3FGCN can comprehensively use information in spectral, spatial, and spectral-spatial domains with limited data. Moreover, to enhance the performance, we explore a shared weights' GCN in the spectral-spatial domain. To further improve the efficiency, superpixels are used to construct the adjacency matrix. Finally, dynamic sampling is adopted to make the model focus more on difficult samples. In the experiments on four datasets, S3FGCN demonstrates better accuracy compared with the state-of-the-art hyperspectral image classification methods.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN: 0196-2892
Year: 2022
Volume: 60
8 . 2
JCR@2022
8 . 2 0 0
JCR@2022
ESI Discipline: GEOSCIENCES;
ESI HC Threshold:38
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 16
SCOPUS Cited Count: 17
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 15
Affiliated Colleges: