Abstract:
针对基站流量随时间波动,具有多周期的特点,提出一种基于经验模态分解与长短期记忆网络(LSTM)的多基站流量预测方法。该方法首先将多个原始基站流量数据依据经验模态分解出多个内涵模态分量,滤除噪声分量并进行重构,最后导入再基于LSTM 网络进行预测。仿真结果表明,基于经验模态分解和LSTM 网络的多基站流量预测模型可以实现短期基站流量的预测,并且可以为基站流量和能耗管理提供指导。
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2022
Page: 295-299
Language: Chinese
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: