Indexed by:
Abstract:
This study simulated a series of bifurcation tunnel fire scenarios using the numerical code to investigate the temperature profile of bifurcation tunnel fire under natural ventilation. The bifurcation tunnel fire scenarios considered three bifurcation angles (30 degrees, 45 degrees, and 60 degrees) and six heat release rates (HRRs) (5, 10, 15, 20, 25, and 30 MW). According to the simulation results, the temperature profile with various HRRs and bifurcation angles was described. Furthermore, the effects of bifurcation angles and HRRs on the maximum temperature under the bifurcation tunnel ceiling and the temperature decay along the longitudinal direction of the branch were investigated. According to the theoretical analysis, two prediction models were proposed. These models can predict a bifurcation tunnel fire's maximum temperature and longitudinal temperature decay in the branch. The results of this study could be valuable for modelling a bifurcation tunnel fire and benefit the fire engineering design of bifurcation tunnels.
Keyword:
Reprint Author's Address:
Email:
Source :
PLOS ONE
ISSN: 1932-6203
Year: 2022
Issue: 1
Volume: 17
3 . 7
JCR@2022
3 . 7 0 0
JCR@2022
ESI Discipline: Multidisciplinary;
ESI HC Threshold:91
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: