Indexed by:
Abstract:
In the Industrial Internet of Things (IIoT) scenario, the increase of surveillance equipment brings challenges to the transmission of real-time video. It needs more efficient approaches to finish video transmission with more stability and accuracy. Therefore, we propose a self-adaptive transmission scheme of videos for multi-capture terminals under IIoT in this paper. To fit for the constant variation of network environment, we compress the videos that wait for transmitting from multi-capture terminals by reducing the non-key frames with Graph Convolutional Network (GCN). Moreover, a self-adaptive strategy of transmission is implemented on the Mobile Edge Computing (MEC) server to adjust the transmission volume of processed videos, and a multi-objective optimization algorithm is utilized to optimize the strategy of transmission during the video transmission. The relative experiments are conducted to validate the performance of the proposed scheme.
Keyword:
Reprint Author's Address:
Source :
2021 IEEE 29TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP 2021)
ISSN: 1092-1648
Year: 2021
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: