• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Jia, Bingying (Jia, Bingying.) | Bing, Liujie (Bing, Liujie.) | Xu, Bang (Xu, Bang.) | Sun, Jihong (Sun, Jihong.) (Scholars:孙继红) | Bai, Shiyang (Bai, Shiyang.)

Indexed by:

EI Scopus SCIE

Abstract:

The amine (NH2)-functionalized UiO-66 was successfully anchored on disorderly layered clinoptilolite (CP) via surfactant (poly(ethylene glycol) (PEG) and poly(vinylpyrrolidone) (PVP))-assisted induction. The structural features and physicochemical parameters of the resultant UiO-66-on-CPs were characterized by powder X-ray diffraction (XRD) patterns, scanning/transmission electron microscopy (SEM/TEM) images, Fourier transform infrared (FT-IR) spectra, N-2 sorption isotherms, and small-angle X-ray scattering (SAXS) patterns. The results demonstrated that the growth of UiO-66-NH2 nanoparticles facilitated the disorder degree of the crystal plane of CP along the a-axis, while the addition of PEG in the hydrothermal synthesis system of CP was conducive to the formation of a flower-like microstructure and the introduction of PVP was beneficial to the nucleation and growth of UiO-66-NH2 nanoparticles with a small size (40 nm) on the surfaces of the obtained CP-PEG lamellas. Finally, the gas-selective adsorption and separation performances of CO2 and CH4 were evaluated using the synthesized disorderly layered UiO-66-on-CP heterostructures as adsorbents, indicating that the NH2-functionalized UiO-66-on-CP exhibited a superior selective factor (3.66) of CO2/CH4. These results elucidated that the proposed approach is a promising strategy for constructing MOF-on-zeolite heterostructures, which may open an avenue to expand CP application and improve their performance.

Keyword:

Author Community:

  • [ 1 ] [Jia, Bingying]Beijing Univ Technol, Dept Environm & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Bing, Liujie]Beijing Univ Technol, Dept Environm & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Xu, Bang]Beijing Univ Technol, Dept Environm & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Sun, Jihong]Beijing Univ Technol, Dept Environm & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [Bai, Shiyang]Beijing Univ Technol, Dept Environm & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Related Article:

Source :

LANGMUIR

ISSN: 0743-7463

Year: 2022

3 . 9

JCR@2022

3 . 9 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:53

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 9

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Affiliated Colleges:

Online/Total:762/10602937
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.