Indexed by:
Abstract:
Multiobjective evolutionary algorithms (MOEAs) have received much attention in multiobjective optimization in recent years due to their practicality. With limited computational resources, most existing MOEAs cannot efficiently solve large-scale multiobjective optimization problems (LSMOPs) that widely exist in the real world. This paper innovatively proposes a dual decomposition strategy (DDS) that can be embedded into many existing MOEAs to improve their performance in solving LSMOPs. Firstly, the outer decomposition uses a sliding window to divide large-scale decision variables into overlapped subsets of small-scale ones. A small-scale multiobjective optimization problem (MOP) is generated every time the sliding window slides. Then, once a small-scale MOP is generated, the inner decomposition immediately creates a set of global direction vectors to transform it into a set of single-objective optimization problems (SOPs). At last, all SOPs are optimized by adopting a block coordinate descent strategy, ensuring the solution's integrity and improving the algorithm's performance to some extent. Comparative experiments on benchmark test problems with seven state-of-the-art evolutionary algorithms and a deep learning-based algorithm framework have shown the remarkable efficiency and solution quality of the proposed DDS. Meanwhile, experiments on two real-world problems show that DDS can achieve the best performance beyond at least one order of magnitude with up to 3072 decision variables.
Keyword:
Reprint Author's Address:
Email:
Source :
NEURAL COMPUTING & APPLICATIONS
ISSN: 0941-0643
Year: 2022
Issue: 5
Volume: 35
Page: 3767-3788
6 . 0
JCR@2022
6 . 0 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: