Indexed by:
Abstract:
There are a large number of structural planes distributed in the surrounding rock of a tunnel, and this is one of the key factors causing a tunnel's instability. Due to different geological and historical conditions, the distribution characteristics and the occurrence of structural planes in the rock mass also have significant differences. In engineering, it is common to encounter structural planes that cut across the tunnel section and have a significant impact on the stability. The occurrence of structural planes is a key factor controlling the mechanical behavior of the surrounding rock. Based on this, laboratory uniaxial compression tests were carried out by constructing a small tunnel physical model with single structural planes of different inclination angles. A related numerical simulation analysis was also carried out. This research indicates that: (1) Under the influence of a single structural plane, the dip direction with 30 degrees-60 degrees is the most dangerous situation, and when the dip angle of the structural plane is between 38 and 88 degrees, it will slip along the structural plane. (2) According to the mechanical mechanism, there are three types of cracks: tensile cracks, shear cracks, and tensile shear cracks. According to the deformation characteristics, there are four types: tension, friction, bending, and shear. (3) There is a certain correlation between the strength of a single discontinuity rock mass and that of a multi-jointed rock mass. When the dip angle of the joints' combination is 45 degrees+60 degrees, the rock mass is in its weakest state.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED SCIENCES-BASEL
Year: 2023
Issue: 3
Volume: 13
2 . 7 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:19
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: