Indexed by:
Abstract:
Municipal wastewater treatment that mainly performed by conventional activated sludge (CAS) process faces the challenge of intensive aeration-associated energy consumption for oxidation of organics and ammonium, contributing to significant directly/indirectly greenhouse gas (GHG) emissions from energy use, which hinders the achievement of carbon neutral, the top priority mission in the coming decades to cope with the global climate change. Therefore, this article aimed to offer a comprehensive analysis of recently developed biological treatment processes with the focus on reducing discharge and CO2 footprint. The biotechnologies including "Zero Carbon", "Low Carbon", "Carbon Capture and Utilization" are discussed, it suggested that, by integrating these processes with energy-saving and carbon recovery, the challenges faced in current wastewater treatment plants can be overcome, and a carbon-neutral even be possible. Future research should investigate the integration of these methods and improve anammox contribution as well as minimize organics lost under different scales.
Keyword:
Reprint Author's Address:
Email:
Source :
BIORESOURCE TECHNOLOGY
ISSN: 0960-8524
Year: 2022
Volume: 364
1 1 . 4
JCR@2022
1 1 . 4 0 0
JCR@2022
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:43
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 28
SCOPUS Cited Count: 33
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: