• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yang, Chengpeng (Yang, Chengpeng.) | Fu, Libo (Fu, Libo.) | Guo, Yizhong (Guo, Yizhong.) | Ma, Yan (Ma, Yan.) | Li, Dongwei (Li, Dongwei.) | Wang, Zhanxin (Wang, Zhanxin.) | Zhang, Ze (Zhang, Ze.) | Wang, Lihua (Wang, Lihua.) (Scholars:王立华) | Han, Xiaodong (Han, Xiaodong.)

Indexed by:

EI Scopus SCIE

Abstract:

Understanding the deformation behavior of crack tips in metals is of great significance for improving fracture toughness. However, how crack tips in nanosized metallic alloys behave under loading is unclear, because most previous studies focused on pure metals. In this study, the atomic-scale deformation behavior of the crack tip in AuAg alloy nanocrystals was observed in situ. We revealed that the deformation mechanism near the crack tip depended on the distance from the tip. For the 'near region' close to the crack tip, plastic deformation was governed by partial dislocations, twinning, and their interactions. For the 'far region', further than -15 nm from the crack tip, full dislocations dominated, and their interactions resulted in Lomer-dislocation (LD) lock formation and destruction. We uncovered that the combination of blunting dislocation-twin interactions, twin-twin intersections, and formation and destruction of LD locks, as a previously unrecognized fracture toughness improvement mechanism in metals.

Keyword:

Crack propagation Twinning In situ transmission electron microscopy Dislocation AuAg nanocrystal alloy

Author Community:

  • [ 1 ] [Yang, Chengpeng]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
  • [ 2 ] [Fu, Libo]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
  • [ 3 ] [Guo, Yizhong]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Yan]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Dongwei]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Zhanxin]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Ze]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
  • [ 8 ] [Wang, Lihua]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
  • [ 9 ] [Han, Xiaodong]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing Key Lab Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
  • [ 10 ] [Zhang, Ze]Zhejiang Univ, Dept Mat Sci, Hangzhou 310008, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

MATERIALS CHARACTERIZATION

ISSN: 1044-5803

Year: 2022

Volume: 194

4 . 7

JCR@2022

4 . 7 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:66

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 37

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Affiliated Colleges:

Online/Total:456/10586403
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.