Indexed by:
Abstract:
Being a critical factor affecting the maintainability and reusability of the software, code readability is growing crucial in modern software development, where a metric for classifying code readability levels is both applicable and desired. However, most prior research has treated code readability classification as a binary classification task due to the lack of labeled data. To support the training of multi-class code readability classification models, we propose an enhanced data augmentation approach that could be used to generate sufficient readability data and well train a multi-class code readability model. The approach includes the use of domain-specific data transformation and GAN-based data augmentation. We conduct a series of experiments to verify our augmentation approach and gain a state-of-the-art multi-class code readability classification performance with 69.5% Micro-F1, 54.0% Macro-F1 and 67.7% Macro-AUC. Compared to the results where no augmented data is used, the improvements on Micro-F1, Macro-F1 and Macro-AUC are significant with 6.9%, 11.3% and 11.2%, respectively. As an innovative work of proposing multi-class code readability classification and an enhanced code readability data augmentation approach, our method is proved to be effective.
Keyword:
Reprint Author's Address:
Email:
Source :
INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING
ISSN: 0218-1940
Year: 2022
0 . 9
JCR@2022
0 . 9 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:46
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: