Indexed by:
Abstract:
Key performance indicators (KPI)-related process monitoring has been of great significance to ensure product quality and economic benefits for batch processes. Considering that different phases exhibit different characteristics, one of the key issues is how to partition the whole batch process into different phases and characterize them separately by multiple phase models. In order to model and monitor batch processes more accurately and efficiently, a novel canonical correlation analysis (CCA) strategy is proposed in this paper. The phase partition algorithm is designed based on the joint canonical variable matrix (JCVM). Different from previous methods, it considers the time sequence of operation phases and can distinguish the phase switches from dynamics anomalies. Using this algorithm, phases are separated in order from a KPI-related perspective, revealing high correlation among variables. After phase partition, a novel multi-phase local neighbourhood standardization CAA (MPLNSCCA) method focusing on KPI is set up for online monitoring, which could further address the misclassification problems. The advantages of the proposed method are illustrated by two case studies, a penicillin simulation platform and an industrial application of Escherichia coli fermentation, respectively.
Keyword:
Reprint Author's Address:
Email:
Source :
CANADIAN JOURNAL OF CHEMICAL ENGINEERING
ISSN: 0008-4034
Year: 2022
Issue: 4
Volume: 101
Page: 1967-1985
2 . 1
JCR@2022
2 . 1 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:53
JCR Journal Grade:3
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: