• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Li, Yuanfeng (Li, Yuanfeng.) | Zhang, Peng (Zhang, Peng.) | Xiong, Jing (Xiong, Jing.) | Wei, Yuechang (Wei, Yuechang.) | Chi, Hongjie (Chi, Hongjie.) | Zhang, Yilin (Zhang, Yilin.) | Lai, Kezhen (Lai, Kezhen.) | Zhao, Zhen (Zhao, Zhen.) | Deng, Jiguang (Deng, Jiguang.)

Indexed by:

EI Scopus SCIE

Abstract:

The purification efficiency of auto-exhaust carbon particles in the catalytic aftertreatment system of vehicle exhaust is strongly dependent on the interface nanostructure between the noble metal component and oxide supports. Herein, we have elaborately synthesized the catalysts (Pt/Fe2O3-R) of Pt nanoparticles decorated on the hexagonal bipyramid alpha-Fe2O3 nanocrystals with co-exposed twelve {113} and six {104} facets. The area ratios (R) of co-exposed {113} to {104} facets in alpha-Fe2O3 nanocrystals were adjusted by the fluoride ion concentration in the hydrothermal method. The strong Pt-Fe2O3{113} facet interaction boosts the formation of coordination unsaturated ferric sites for enhancing adsorption/activation of O-2 and NO. Pt/Fe2O3-R catalysts exhibited the Fe2O3{113} facet-dependent performance during catalytic purification of soot particles in the presence of H2O. Among the catalysts, the Pt/Fe2O3-19 catalyst exhibits the highest catalytic activities (T-50 = 365 degrees C, TOF = 0.13 h(-1)), the lowest apparent activation energy (69 kJ mol(-1)), and excellent catalytic stability during soot purification. Combined with the results of characterizations and density functional theory calculations, the catalytic mechanism is proposed: the active sites located at the Pt-Fe2O3{113} interface can boost the key step of NO oxidation to NO2. The crystal facet engineering is an effective strategy to obtain efficient catalysts for soot purification in practical applications.

Keyword:

crystal facet-dependent activity soot purification SMSI Pt alpha-Fe2O3

Author Community:

  • [ 1 ] [Li, Yuanfeng]China Univ Petr, Key Lab Opt Detect Technol Oil & Gas, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
  • [ 2 ] [Zhang, Peng]China Univ Petr, Key Lab Opt Detect Technol Oil & Gas, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
  • [ 3 ] [Xiong, Jing]China Univ Petr, Key Lab Opt Detect Technol Oil & Gas, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
  • [ 4 ] [Wei, Yuechang]China Univ Petr, Key Lab Opt Detect Technol Oil & Gas, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
  • [ 5 ] [Chi, Hongjie]China Univ Petr, Key Lab Opt Detect Technol Oil & Gas, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
  • [ 6 ] [Zhang, Yilin]China Univ Petr, Key Lab Opt Detect Technol Oil & Gas, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
  • [ 7 ] [Lai, Kezhen]China Univ Petr, Key Lab Opt Detect Technol Oil & Gas, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
  • [ 8 ] [Zhao, Zhen]China Univ Petr, Key Lab Opt Detect Technol Oil & Gas, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
  • [ 9 ] [Deng, Jiguang]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

ENVIRONMENTAL SCIENCE & TECHNOLOGY

ISSN: 0013-936X

Year: 2021

Issue: 23

Volume: 55

Page: 16153-16162

1 1 . 4 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:94

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 23

SCOPUS Cited Count: 24

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:537/10561574
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.