• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Lihua (Chen, Lihua.) | Hou, Chaoran (Hou, Chaoran.) | Cui, Shoujie (Cui, Shoujie.) | Sun, Yue (Sun, Yue.)

Indexed by:

Scopus SCIE

Abstract:

Based on a rigid-flexible piezoelectric energy harvester (PEH) composed of antisymmetric double plates with a rigid frame, which has three operating bandwidths in a low-frequency range, nonlinearity is used to further broaden the operating bandwidth. Firstly, finite-element simulation is used to study the influence of structural parameters, such as the width of the frame and the distance between two plates, on the natural frequencies. Bending deformation of cantilever plates and rigid motion of frame are considered comprehensively to obtain the theoretical mode functions of the structure. The nonlinear electromechanical coupling model is established via von Karman nonlinear geometric assumptions and the Hamilton principle. In order to study the broadening of output bandwidth caused by nonlinearity, the average equations with 1:1.5:2 internal resonance ratio are derived by the multi-scale method. On the basis of the calculated optimal resistance, the voltage response and dimensionless amplitude response curves induced by the first three order modes are numerically calculated. Theoretical analysis shows that the proposed PEH not only obtains three peaks of voltage output in a low-frequency range, but also utilizes hard spring effect and internal resonance to widen the output bandwidth of each resonance interval. Copyright (C) 2021 EPLA

Keyword:

Author Community:

  • [ 1 ] [Chen, Lihua]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 2 ] [Hou, Chaoran]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 3 ] [Cui, Shoujie]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 4 ] [Sun, Yue]Zhejiang Sci Tech Univ, Sch Fash Design & Engn, Hangzhou 310018, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Related Article:

Source :

EPL

ISSN: 0295-5075

Year: 2021

Issue: 2

Volume: 134

1 . 8 0 0

JCR@2022

ESI Discipline: PHYSICS;

ESI HC Threshold:72

JCR Journal Grade:3

Cited Count:

WoS CC Cited Count: 1

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Affiliated Colleges:

Online/Total:1052/10641937
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.