Indexed by:
Abstract:
Given the carbon limitation of municipal wastewater, the balance of biological nitrogen and phosphorus removal remains a challenging task. In this study, an anaerobic-anoxic-oxic combining with biological contact oxidation (A(2)/O-BCO) system treating real municipal wastewater was operated for 205 days, and COD-to-PO43--P ratio was confirmed as the key parameter for balancing denitrifying phosphorus-accumulating organisms (DPAOs) and denitrifying glycogen-accumulating organisms (DGAOs) to enhance N and P removal. When DPAOs dominated in nutrients removal, the increase in COD/P from 17.1 to 38.1 caused the deterioration in nitrogen removal per-formance decreasing to 71.8 %. As COD/P ratio decreased from 81.3 to 46.8, Ca.Competibacter proliferated from 3.11 % to 6.00 %, contributing to 58.9 % of nitrogen removal. The nitrogen and phosphorus removal efficiency reached up to 79.3 % and 95.2 %. Overall, establishing DGAOs-DPAOs balance by strengthening the effect of DGAOs could enhance the nutrients removal performance and accordingly improve the stability and efficiency of the system.
Keyword:
Reprint Author's Address:
Email:
Source :
BIORESOURCE TECHNOLOGY
ISSN: 0960-8524
Year: 2022
Volume: 369
1 1 . 4
JCR@2022
1 1 . 4 0 0
JCR@2022
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:43
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 13
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: