• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yang Liang (Yang Liang.) | Yang Yong-tao (Yang Yong-tao.) | Zheng Hong (Zheng Hong.)

Indexed by:

EI Scopus

Abstract:

Fracture is one of the most common failure modes of materials and components and greatly restricts engineering design. Understanding of the crack propagation and evolution of rock and other engineering materials is of great significance to engineering construction. For the current numerical methods there are more or less limitations when analyzing the evolution of cracks, such as the grid dependence of the crack path, the difficulty to deal with crack bifurcation and merging by the classic fracture criterion. In recent years, the phase field method (PFM) has been widely used in simulating crack growth. A phase field numerical manifold method (PFNMM) makes use of the advantages of the phase field method in simulating crack propagation and those of the numerical manifold method (NMM), and is proposed for crack growth in rock. The implementation details of the proposed numerical model are presented. Several benchmark examples, including notched semi-circular bend test and Brazilian disc test, are adopted to validate the proposed numerical approach. After that, the multi-crack propagation process with different rock bridge inclination angles under uniaxial compression is simulated, which is in good agreement with the results derived from laboratory and PFC. And the results indicate that the PFNMM has broad application prospects in simulating crack growth of rock.

Keyword:

variational fracture phase field method numerical manifold method crack propagation

Author Community:

  • [ 1 ] [Yang Liang]Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Hubei, Peoples R China
  • [ 2 ] [Yang Yong-tao]Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Hubei, Peoples R China
  • [ 3 ] [Yang Liang]Univ Chinese Acad Sci, Beijing 100049, Peoples R China
  • [ 4 ] [Zheng Hong]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

ROCK AND SOIL MECHANICS

ISSN: 1000-7598

Year: 2021

Issue: 12

Volume: 42

Page: 3419-3427

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 6

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 11

Affiliated Colleges:

Online/Total:905/10623192
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.