Indexed by:
Abstract:
Existing no-reference (NR) image quality assessment (IQA) metrics are still not convincing for evaluating the quality of the camera-captured images. Toward tackling this issue, we, in this article, establish a novel NR quality metric for quantifying the quality of the camera-captured images reliably. Since the image quality is hierarchically perceived from the low-level preliminary visual perception to the high-level semantic comprehension in the human brain, in our proposed metric, we characterize the image quality by exploiting both the low-level image properties and the high-level semantics of the image. Specifically, we extract a series of low-level features to characterize the fundamental image properties, including the brightness, saturation, contrast, noiseness, sharpness, and naturalness, which are highly indicative of the camera-captured image quality. Correspondingly, the high-level features are designed to characterize the semantics of the image. The low-level and high-level perceptual features play complementary roles in measuring the image quality. To infer the image quality, we employ the support vector regression (SVR) to map all the informative features to a single quality score. Thorough tests conducted on two standard camera-captured image databases demonstrate the effectiveness of the proposed quality metric in assessing the image quality and its superiority over the state-of-the-art NR quality metrics. The source code of the proposed metric for camera-captured images is released at https://github.com/YT2015?tab=repositories.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON CYBERNETICS
ISSN: 2168-2267
Year: 2021
Issue: 6
Volume: 53
Page: 3651-3664
1 1 . 8 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:87
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 30
SCOPUS Cited Count: 21
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: