Indexed by:
Abstract:
The one-dimensional van der Waals (1D vdW) material fibrous red phosphorus (FRP) nanotubes are a promising direct-bandgap semiconductor with high carrier mobility and anisotropic optical responses because of low deformation potential and dangling-bond-free anisotropic interface. Employing first-principles calculations, we captured the potential of 1D FRP nanotubes. The thermal stability of 1D FRP nanotubes was confirmed by phonon calculation. Meanwhile, Raman spectroscopy indicated the strong vibration mode (366 cm-1) is along the phosphorus nanotube. Interestingly, spatial anisotropy bandgaps were found along with various stacking orientations. The charge transport calculations showed that the 1D FRP nanotube has a high hole mobility (499.2 cm2 V-1 s-1), considering the weak acoustic phonon scattering. More importantly, we found that the hole mobility changes dramatically (down to 7.1 cm2 V-1 s-1) under the strain, and the strain-dependent charge transport property of 1D FRP nanotubes could be considered to have many potential applications for electronics, optoelectronics, and switching devices.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF PHYSICAL CHEMISTRY LETTERS
ISSN: 1948-7185
Year: 2022
Issue: 46
Volume: 13
Page: 10778-10785
5 . 7
JCR@2022
5 . 7 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:53
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: