Indexed by:
Abstract:
The effects of aluminum (Al) on the microstructure, hardness and wear resistance of tungsten-copper (W-Cu) composites were investigated. The W-Cu composites were fabricated via mechanical alloying and spark plasma sintering. It is found that the Al dissolved in the metastable W-Cu alloy can act as an 'intermediary' to hinder the diffusion and phase separation process of Cu out of W during sintering, constructing an interpenetrating nanostructure where Al redistributes in W and Cu. Correspondingly, the hardness of composites increase from 463.4 HV30 to 512.05 HV30 due to Al dissolution and formation of the nanostructure, and their contributions to hardness variation of the original W and Cu regions were distinguished by nanoindentation. In addition, the wear volume was also reduced to less than a third of that of original W-Cu composites without Al addition due to the abundant interfaces and mechanical strengthening, which restricts the removal of W and propagation of cracks during the wear process.
Keyword:
Reprint Author's Address:
Email:
Source :
NANOTECHNOLOGY
ISSN: 0957-4484
Year: 2020
Issue: 13
Volume: 31
3 . 5 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:169
Cited Count:
WoS CC Cited Count: 20
SCOPUS Cited Count: 19
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: