Indexed by:
Abstract:
In order to make the walking gait of biped robot more human like, this paper takes the human walking data as the expected gait of robot, and uses the periodic characteristics of gait, proposes a gait tracking control strategy of Biped Robot Based on adaptive gait switching algorithm. Firstly, this paper establishes the complete dynamic models of left leg support phase (LSP) and right leg support phase (RSP) based on Lagrange method, then designs the corresponding LQR gait tracking control strategy, and uses the adaptive weighted particle swarm algorithm (A WPSO) to obtain the optimal controller parameters. Finally, the threshold range of plantar contact force in two periods are estimated based on the adaptive mechanism, and the occurrence of gait switching is detected according to the defined decision rules, thus trigger the control strategy in the next stage to realize the walking tracking control of biped robot. The experimental results show that only two LQR controllers to realize the accurate tracking of the desired gait of the biped robot, and the maximum gait speed reaches two steps/s, which is close to the human gait speed. Compared with other methods, the gait is more human like. © 2022 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2022
Page: 105-110
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: