• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Bi, J. (Bi, J..) | Zhang, C. (Zhang, C..) | Yuan, H. (Yuan, H..) | Guan, Z. (Guan, Z..) | Qiao, J. (Qiao, J..)

Indexed by:

EI Scopus

Abstract:

Water quality prediction refers to the prediction of future water quality changes based on past data. Traditional prediction models cannot capture intricate and nonlinear features. Typical machine learning methods extract nonlinear characteristics, but they suffer from overfitting problems due to data noise. Most current deep learning models have problems of gradient disappearance and explosion, and often fail to capture long-term dependence. To solve above-mentioned problems, this work proposes a multi-indicator time series prediction method named SG-Informer for river water quality prediction. SG-Informer integrates the Savitsky-Golay filter, the ProbSparse self-attention mechanism of an encoder, and a generative style decoder, serving as data smoothing and noise elimination, network scale reduction, and prediction speed improvement, respectively. SG-Informer establishes a high-quality water quality time prediction model, which effectively predicts the future water quality time series trend. Based on real-life data sets of water quality, multi-indicator and single-indicator prediction experiments are performed. Experimental results demonstrate that the proposed SG-Informer outperforms several state-of-the-art prediction methods in terms of prediction accuracy.  © 2022 IEEE.

Keyword:

Water quality prediction Generative style decoder ProbSparse self-attention Savitzky-Golay filter Multi-indicator data

Author Community:

  • [ 1 ] [Bi J.]Beijing University of Technology, Faculty of Information Technology, Beijing, 100124, China
  • [ 2 ] [Zhang C.]Beijing University of Technology, Faculty of Information Technology, Beijing, 100124, China
  • [ 3 ] [Yuan H.]Beihang University, School of Automation Science and Electrical Engineering, Beijing, 100191, China
  • [ 4 ] [Guan Z.]Beijing University of Technology, Faculty of Information Technology, Beijing, 100124, China
  • [ 5 ] [Qiao J.]Beijing University of Technology, Faculty of Information Technology, Beijing, 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

ISSN: 1062-922X

Year: 2022

Volume: 2022-October

Page: 178-183

Language: English

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Affiliated Colleges:

Online/Total:1169/10575715
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.