Indexed by:
Abstract:
With the rapid popularization of mobile devices, the mobile crowdsourcing has become a hot topic in order to make full use of the resources of mobile devices. To achieve this goal, it is necessary to design an excellent incentive mechanism to encourage more mobile users to actively undertake crowdsourcing tasks, so as to achieve maximization of certain economic indicators. However, most of the reported incentive mechanisms in the existing literature adopt a centralized platform, which collects the bidding information from workers and task requesters. There is a risk of privacy exposure. In this paper, we design a decentralized auction framework where mobile workers are sellers and task requesters are buyers. This requires each participant to make its own local and independent decision, thereby avoiding centralized processing of task allocation and pricing. Both of them aim to maximize their utilities under the budget constraint. We theoretically prove that our proposed framework is individual rational, budget balanced, truthful, and computationally efficient, and then we conduct a group of numerical simulations to demonstrate its correctness and effectiveness. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2022
Volume: 13513 LNCS
Page: 207-218
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: