Indexed by:
Abstract:
Deep learning has been applied for motor imagery electroencephalogram (MI-EEG) classification in brain-computer system to help people who suffer from serious neuromotor disorders. The inefficiency network and data shortage are the primary issues that the researchers face and need to solve. A novel MI-EEG classification method is proposed in this paper. A plain convolutional neural network (pCNN), which contains two convolution layers, is designed to extract the temporal-spatial information of MI-EEG, and a linear interpolation-based data augmentation (LIDA) method is introduced, by which any two unrepeated trials are randomly selected to generate a new data. Based on two publicly available brain-computer interface competition datasets, the experiments are conducted to confirm the structure of pCNN and optimize the parameters of pCNN and LIDA as well. The average classification accuracy values achieve 90.27% and 98.23%, and the average Kappa values are 0.805 and 0.965 respectively. The experiment results show the advantage of the proposed classification method in both accuracy and statistical consistency, compared with the existing methods. © 2022, Shanghai Jiao Tong University.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Shanghai Jiaotong University (Science)
ISSN: 1007-1172
Year: 2022
Issue: 6
Volume: 29
Page: 958-966
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 30
Affiliated Colleges: