Indexed by:
Abstract:
The interaction between oxidation and frictional load can greatly deteriorate the performance of ceramic-metal composites. In this work, we used WC-Co cermet as a representative of ceramic-metal composites to study its wear failure behavior and protection effectiveness. It is found that a transition of wear mechanism from mechanical wear to oxidative wear occurs with increasing temperature. The addition of zirconia can significantly improve the anti-oxidation performance and load-bearing capacity of the cermet under the frictional load. This is mainly attributed to the modulation of the tribo-oxide layer constitutions and changes in surface morphology. The zirconia component facilitates the formation of a dense protective oxide layer and reduces the content of brittle oxides on the worn surface. Based on the understanding of the temperature- and oxidation-induced compositional and microstructural evolutions at the sliding contact surface and subsurface, a promising approach is proposed for developing ceramic-metal composites with high wear resistance and anti-oxidation capability. © 2023
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Materials Science and Technology
ISSN: 1005-0302
Year: 2023
Volume: 155
Page: 33-46
1 0 . 9 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:26
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: