• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yang, Y. (Yang, Y..) | Peng, Y. (Peng, Y..) | Cheng, J. (Cheng, J..) | Zhang, S. (Zhang, S..) | Liu, C. (Liu, C..) | Zhang, L. (Zhang, L..)

Indexed by:

EI Scopus SCIE

Abstract:

In this study, a novel two-stage aerobic granular sludge (AGS) system was developed to treat municipal wastewater. High removal efficiencies of phosphorus (91%) and nitrogen (81%) were obtained under a low influent carbon/nitrogen ratio of 5.4. The high nutrient removal was attributed to microbial segregation in the two sequencing batch reactors (SBRs). In the first reactor, the high abundance of polyphosphate-accumulating organisms (Candidatus Accumulibacter 15.3%) promoted a high rate of enhanced biological phosphorus removal (EBPR). In the second reactor, residual ammonium was autotrophically removed via partial nitritation/anammox (PN/A). Moreover, granular sludge was maintained in both SBRs with a sludge volume index of 40–80 mL/g, which reduced the settling time and improved the operational stability. Furthermore, batch tests and mass balance analysis revealed that most influent phosphorus (68%) and some organics (33%) were recovered from the waste sludge as struvite and methane, respectively. Overall, this study illustrates that the novel two-stage AGS system integrating EBPR and PN/A is promising for enhancing nutrient removal, as well as resource and bioenergy recovery from municipal wastewater. © 2023 Elsevier B.V.

Keyword:

Municipal wastewater Partial nitritation/anammox Enhanced biological phosphorus removal Granular sludge Resource recovery

Author Community:

  • [ 1 ] [Yang Y.]School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
  • [ 2 ] [Yang Y.]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Peng Y.]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Cheng J.]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 5 ] [Zhang S.]Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
  • [ 6 ] [Liu C.]School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
  • [ 7 ] [Zhang L.]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Chemical Engineering Journal

ISSN: 1385-8947

Year: 2023

Volume: 462

1 5 . 1 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:19

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 18

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 11

Affiliated Colleges:

Online/Total:440/10558111
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.